G2 and some exceptional Witt vector identities

نویسنده

  • Nicholas M. Katz
چکیده

We find some new one-parameter families of exponential sums in every odd characteristic whose geometric and arithmetic monodromy groups are G2. 1. The exceptional identities Fix a prime p, and consider the p-Witt vectors of length 2 as a ring scheme over Z. The addtion law is given by (x, a) + (y, b) := (x+ y, a+ b+ (x + y − (x+ y))/p). The multiplication law is given by (x, a)(y, b) := (xy, xb+ ya+ pab). For an odd prime p, we have (x, 0) + (y, 0) + (−x− y, 0) = (0, (x + y − (x+ y))/p). Let us define, for odd p, the integer polynomial Fp(x, y) := (x p + y − (x+ y))/p ∈ Z[x, y]. For p = 2, we have (x, 0) + (y, 0) + (−x− y, 0) = (0, x + xy + y), and we define F2(x, y) := x 2 + xy + y ∈ Z[x, y]. Thus F3 = −xy(x+ y). The exceptional identities we have in mind are F5 = F3F2, F7 = F3(F2) . 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 21 00 58 v 1 3 0 O ct 2 00 2 Random matrix theory , the exceptional Lie groups , and L - functions

Random matrix theory, the exceptional Lie groups, and L-functions. Abstract There has recently been interest in relating properties of matrices drawn at random from the classical compact groups to statistical characteristics of number-theoretical L-functions. One example is the relationship conjectured to hold between the value distributions of the characteristic polynomials of such matrices an...

متن کامل

Coset Construction of Spin(7), G2 Gravitational Instantons

We study metrics on non-compact manifolds with the exceptional holonomy Spin(7), G2. Using the formulation with vector fields, we investigate the metrics with Spin(7) holonomy recently found by Cvetič, Gibbons, Lü and Pope [hep-th/0103155]. Furthermore, we develop the similar formulation for metrics with G2 holonomy. email: [email protected] email: [email protected]...

متن کامل

A Note on Boole Polynomials

Boole polynomials play an important role in the area of number theory, algebra and umbral calculus. In this paper, we investigate some properties of Boole polynomials and consider Witt-type formulas for the Boole numbers and polynomials. Finally, we derive some new identities of those poly-nomials from the Witt-type formulas which are related to Euler polynomials.

متن کامل

On the geometry of the exceptional group G 2( q ), q even

We study some geometry of the exceptional group G2(q), q even, in terms of symplectic geometric configurations in the projective space PG(5, q). Using the spin representation of Sp6(q), we obtain an alternative description of the Split Cayley hexagon H(q) related to G2(q). We also give another geometric proof of the maximality of G2(q), q even, in PSp6(q).

متن کامل

On the Exceptional Gauged WZW Theories

We consider two different versions of gauged WZW theories with the exceptional groups and gauged with any of theirs null subgroups. By constructing suitable automorphism, we establish the equivalence of these two theories. On the other hand our automorphism, relates the two dual irreducible Riemannian globally symmetric spaces with different characters based on the corresponding exceptional Lie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Finite Fields and Their Applications

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2017